
WS03. Communication Abstractions for
Distributed Systems

Antoine Beugnard1, Ludger Fiege2, Robert Filman3, Eric Jul4, and Salah
Sadou5

1 ENST-Bretagne, Brest, France, antoine.beugnard@enst-bretagne.fr
2 University of Technology, Darmstadt, Germany fiege@gkec.tu-darmstadt.de

3 RIACS/NASA Ames Research Center, USA rfilman@mail.arc.nasa.gov
4 University of Copenhagen, Copenhagen, Denmark eric@diku.dk
5 Université de Bretagne Sud, Vannes, France sadou@iu-vannes.fr

Abstract. Communication is the foundation of many systems. Under-
standing communication is a key to building a better understanding of
the interaction of software entities such as objects, components, and as-
pects. This workshop was an opportunity to exchange points of view
on many facets of communication and interaction. The workshop was
divided in two parts: the first dedicated to the presentation of eight po-
sition papers, and the second to the selection and discussion of three
critical topics in the communication abstraction domain.

1 Introduction

As applications become increasingly distributed and as networks provide more
connection facilities, communication takes an increasingly central role in modern
software systems. Many different techniques and concepts have been proposed,
in both research and industry, for providing structure to the problems of com-
munication in software systems. Over the last 15 years, the basic building blocks
for distributed object systems have emerged: distributed objects, communicating
with Remote Message Send (RMS), also known as Remote Method Invocation
(RMI) or Location-Independent Invocation (LII). Message-oriented middleware
has also seen some clever implementations. However, it has also become clear
that while such abstractions are by themselves sufficient to expose the hard
problems of distributed computing, they do not solve them.

Databases and graphical user interfaces are examples of software elements
that were once difficult to program but have, through the right abstractions and
implementations, been greatly simplified. The question central to this workshop
is whether some similar abstractions and can be devised for simplifying dis-
tributed applications. Just as successful database components required not only
mechanisms for storing and retrieving data, but also abstractions like query
languages and transactions, successful communication abstractions will require
more than the mere ability to communicate.

At previous ECOOP workshops on Communication Abstractions, we iden-
tified some features (security, reliability, quality of service, run-time evolution,



2 A. Beugnard, L. Fiege, R. Filman, E. Jul and S. Sadou

causality) that are central to any communication abstraction and some particu-
lar communication abstractions such as Peer-to-Peer or Publish/Subscribe. The
goal of this workshop was to work on the definition of new and better commu-
nication abstractions and on the distributed-specific features mentioned above.

We received 17 positions papers. Three were related to cryptography only and
were considered out of scope. All others were reviewed by at least two members
of the program committee and 8 were considered bringing an interesting point
of view and deserving a chance to be discussed.

We organized the workshop as follows:

– The morning was dedicated to short, 15 minute presentations of selected pa-
pers. The paper authors entertained questions from the workshop attendees
and provided clarifying responses.

– In the afternoon, we formed three working groups for deeper discussion of
particular issues in communication abstractions. The group reported their
conclusions to the collected workshop at the end of the day.

2 Position papers abstracts and discussions

2.1 Event Based Systems as Adaptative Middleware Platforms [7]

Adaptive middleware is increasingly being used to provide applications with the
ability to adapt to changes such as software evolution, fault tolerance, autonomic
behavior, or mobility. It is only by supporting adaptation to such changes that
these applications will become truly dependable. In this paper we discuss the use
of event based systems as a platform for developing adaptive middleware. Events
have the advantage of supporting loosely coupled architectures, which raises the
possibility of orthogonally extending applications with the ability to communi-
cate through events. We then use this ability as a way to change the behavior
of applications at run time in order to implement the required adaptations. In
the paper we briefly describe the mechanisms underlying our approach and show
how the resulting system provides a very flexible and powerful platform in a wide
range of adaptation scenarios.

Questions and Answers

How do you know where to put the hooks on the application? We assume we have
access to the source code of the applications and know how to generate the point cuts
that are needed. In some cases it is not necessary to have access to the source code as
we can use PROSE to trap generic operations like outgoing socket connection calls to
a certain location. Nevertheless, we are right now assuming that the source code or at
least the relevant parts of the source code are known.

Centralized vs. distributed We currently use an approach similar to Bluetooth and we
pre-allocate the master. We have not yet done performance studies on the differences
between centralized and distributed event management.



WS03. Communication Abstractions for Distributed Systems 3

Only application extensions or middleware extensions as well? We can do both.
Certainly the application. The event system must run in Java and be amenable to
PROSE but in principle it is possible to extend the event system as well.

What about the Reliability model? Right now we do not have reliability. We were
trying to prove the concept of dynamic adaptability using events and we have not
yet gone as far as considering reliability. At this stage we are focused on basic perfor-
mance problems inherent to wireless networks. Once those are solved, we will then add
additional layers of functionality such as reliability, security, etc.

Without reliability is the system usable? No. But what we have is only the first step.
We have not yet completed the system and there are several layers missing to make
it a realistic platform. Reliability will be implemented at a higher level than what has
been described in the talk.

Removing and introducing new functionality, cross interactions We have two type
of extensions, a non-aspect extensions (module replacement) and an aspect based ex-
tension that supports further extensions. The assumption is that the person introduces
extensions knows what she is doing. Extensions are part of the code of an application
and one can create bugs much as bugs are introduced in normal code.

What devices do you use? Laptops in a first attempt. IPAQs with Linux and Java
right now.

How do you map new events to the parameters and the actual application?
PROSE uses the JVMDI to extract the parameters of calls and we use that infor-

mation to cast parameters as necessary. For matching parameters, we use a simple

algorithm that simply does pattern matching. Future versions will do a more complete

job in this area.

2.2 Interaction systems design and the protocol and middleware
centered paradigms in distributed application development [2]

This paper aims at demonstrating the benefits and importance of interaction
systems design in the development of distributed applications. We position in-
teraction systems design with respect to two paradigms that have influenced the
design of distributed applications: the middleware centered and the protocol-
centered paradigm. We argue that interaction systems that support application-
level interactions should be explicitly designed, using the externally observable
behavior of the interaction system as a starting point in interaction systems
design. This practice has two main benefits: to promote a systematic design
method, in which the correctness of the design of an interaction system can be
assessed against its service specification; and, to shield the design of application
parts that use the interaction system from choices in the design of the supporting
interaction system.

Questions and Answers



4 A. Beugnard, L. Fiege, R. Filman, E. Jul and S. Sadou

What is the notion of platform-independence you adopt? The application part is
defined at a high level of platform independence, which means that the applications
parts are defined in a way that is unconstrained by potential target platforms. This is
because they are defined in terms of the external behaviour of the interaction system.

The design of the interaction system itself may rely on an abstract platform, which
will define the notion of platform-independence explicitly, by defining what character-
istics of potential platforms are to be considered.

Can there multiple interaction systems coexist? What if they interact? Yes, they
can coexist. There is a duality between interaction systems and system parts. If a
system part interacts with two or more interaction parts, it can be considered itself an
interaction system.

How do you compare your approach with approaches in coordination languages,
EAI or MDA? This comparison is the next step of this approach. We have a set
of design concepts that have been derived from LOTOS. The group I work on was
involved in the development of LOTOS and departed from it for a more expressive
set of basic design concepts based on interactions and relations between interactions.
As future work, we should look at other coordination languages and see how the basic
concepts can be mapped1.

Is the boundary between two systems is itself an interaction system? Yes, and it
should be considered explicitly as a interaction system if it is interesting according to
the criteria I’ve presented for justifying interaction system design. This is possible in
the approach because of the recursive definition of interactions systems.

Where does one stop? (because otherwise you’ll have infinite interaction systems)
We should stop when the interactions are simple enough to be realized at implemen-
tation. This is arbitrary, again according to the criteria to justify interaction system
design.

How does the boundary between system parts look like? How to define it? We
have a set of basic design concepts for that. Interaction points are abstractions of
the mechanisms shared by two system parts for interworking. Interactions occur at
interaction points. Interactions are shared activities. They may take time and occur
synchronously, in that all system parts involved in the interaction perceive the occur-
rence at the same time when the interaction completes (and have the same perspective
on that). The use of synchronous interactions allow us to model tightly coupled inter-
actions at a very high level of abstraction (without considering implementations of the
synchronous interactions)2.

Do system parts have to know (be aware of) the interaction points? This is a basic

set of design concepts that allows a mapping to different implementations solutions.

The interaction points is an abstraction of the mechanisms shared by two system parts.

1 with respect to the relation to MDA please have a look at [10]
2 please have a look at reference [1]



WS03. Communication Abstractions for Distributed Systems 5

2.3 A Modular QoS-enabled Load Management Framework for
Component-Based Middleware [4]

Services are increasingly dependent on distributed computer systems for of-
fice workstation support, banking transactions, supermarket stock supply, mo-
bile phones, web services etc. Web services are being increasingly used for e-
commerce, education and for information access within and between organi-
zations. This leads to increasing need for high performance, enterprise level,
distributed systems. The most suitable way to achieve high performance is by
using load management systems. Delivering end-to-end QoS for diverse classes of
applications continues to be a significant research area. There are individual tech-
nologies, based on prior research, generally targeting only specific domains and
usage patterns. This paper presents a new QoS-enabled load management frame-
work for component oriented middleware. It proposes a new approach for load
management and for delivering end-to-end QoS services. The proposed frame-
work offers the possibility of selecting the optimal load distribution algorithms
and changing the load metrics at runtime. The QoS service level agreements are
made at user level, the application being managed not being aware of this. Work
is in progress for creating a simulation model for the proposed framework and
for evaluating the performance improvements it offers, with the current focus on
the enterprize java beans platform.

2.4 Communication Abstractions in MundoCore [6]

Ubiquitous computing with its many different devices, operating system plat-
forms and network technologies, poses new challenges to communication mid-
dleware. Mobile devices providing vastly different capabilities need to integrate
into heterogeneous environments. We have identified a key set of requirements for
ubiquitous computing communication middleware which are modularity, small
footprint, and ability to cope with handovers. In this paper we present Mundo-
Core which provides a set of communication abstractions based on Publish/
Subscribe for ubiquitous computing scenarios. We present the communication
model of MundoCore and discuss our implementation, along with our experi-
ences and observations from the implementation process.

Questions and Answers

What is currently implemented? MundoCore on C++ and Java. IP-based transport
services with optional AES-128 encryption. Routing service. Event routing service.
Remote method calls based on own precompiler. Language extensions based on own
precompiler. Current Limitations: Currently only SOAP message format supported,
Event filters simplistic, No access services (DUN)

Could it be ported to an Ericson Smartphone? Yes. The footprint of the C++
version is below 100KB. We plan to do a port on Nokia Series 60 (EPOC) in the near
future.



6 A. Beugnard, L. Fiege, R. Filman, E. Jul and S. Sadou

How does ’emits’ behave in case of inheritance? Emits is implemented by means

of protected static inner classes. If the enclosing class is derived, the emitter-class is

also derived. This way, inheritance is fully supported by using standard Java language

features.

2.5 CSCWGroup: A Group Communication System for Cooperative
Work in the WAN [9]

Group communication is an important part of CSCW system. Originally its
studies focused on LAN environment, and later on WAN for users concentratedly
in several areas. However, it was rarely discussed for group members distributing
dispersedly. For widely supporting the group communication in the WAN, an new
group communication system– CSCWGroup is built. The client/server cluster
architecture is introduced in our system. Based on it, a set of management
mechanisms is designed in this paper. For evaluating the system performance,
simulation software JAVASIM is used to simulate the running process of the
system. With the measurement results of message delay and system throughput,
it is proven that the system has the good scalability and can well support the
group communication in the WAN environment.

2.6 Adam: a library of agreement components for reliable
distributed programming [8]

This paper presents ADAM, a component-based library of agreement abstrac-
tions, used to build reliable programming toolkits. ADAM is based on a generic
agreement component which can be configured to build many abstractions such
as Atomic Broadcast, Membership Management, View Synchrony, Non-Blocking
Atomic Commitment, etc. Currently, ADAM is used by the Eden framework,
which is a group-based toolkit and also by OpenEden, which is an implemen-
tation of the Fault-Tolerant CORBA specification.

Questions and Answers

Is there any relation with other group communication system? We put the em-
phasis on a component approach and try to implement various agreement problem by
configuring parameters.

How F, GET are provided? A concrete agreement component registers and offers

the appropriate functions.

2.7 Anonymous Communication in Practice [3]

Anonymity is something most people expect in their daily lives. We usually ex-
pect to be anonymous when we vote, and, for example it is essential for many
telephone hotlines for people with serious problems that the users are anony-
mous. In general there are many daily scenarios where people would like to



WS03. Communication Abstractions for Distributed Systems 7

communicate with others without letting any third party know who they are
communicating with. Communication on the Internet is not anonymous, but if
we want our activity online to be as private as offline, anonymity is needed. The
goal of this paper is to provide a view on the field of anonymous communication
with a focus on practical solutions to aid the designers of distributed systems
where privacy is an issue. We explain the problem of anonymous communica-
tion and discuss socalled rerouting based solutions. Our discussion includes an
overview of security issues and a survey of useful designs.

Questions and Answers

Is dummy traffic sometimes used to hide communication? Yes, dummy traffic is
needed to prevent traffic analyzing. Tarzan uses pairs of rerouters that always sends
the same amount of traffic. If no real traffic is available, random data is sent.

Does mixing scale? The short answer for most designs are yes. If the rerouters are
organized in a decentralized way, it would not be a problem with lots of servers. The
number of rerouters must however grow with the usage otherwise the system will
obviously slow down, because the work load will increase.

How could the rerouters be organized? In theory they could be placed in one room,
or we could even make a system with just one rerouter—in practice that would be
to vulnerable. It would be good to spread out rerouters geographically as well as on
different ”groups” (nations, companies, organizations) to make the rerouting hard to
attack by compromising rerouters.

What if compromised rerouters changes packet? One attack could be just to drop
packets, this cannot be prevented. Another attack is to change the content before
resending the packet but otherwise each packet should be integrity protected. This is
actually easy to do, because often there is a layer of encryption for each rerouter, a
checksum could be included before encryption, this could be verified after decryption.

How does ”receiver” anonymity work? Usually it is done by the receiver providing
information on a path in the rerouting network, the sender must obtain this before a
communication could be initiated.

This needs some kind of Publish-Subscriber system!? Yes.

2.8 Communication Abstractions Through New Language Concepts

In this paper [5] we take the position that dedicated language concepts are to
be considered as the solution for introducing commonly used communication
abstractions into distributed programs. In our research we explicitly abandon
middleware solutions, such as generation of stubs and skeletons. They do not
give rise to the new ways of thinking that will be required for the construc-
tion of distributed and mobile systems in highly dynamic environments such as
interconnected desktops, pdas and domotics. More specifically, we think that



8 A. Beugnard, L. Fiege, R. Filman, E. Jul and S. Sadou

both the complexity and weakness of most middleware technology and the so-
lutions the spawn is due to the fact that the technology is statically typed and
class-based. Indeed, the major raison detre for generated interfaces and stubs
is to satisfy type checkers for static languages. Because of that, we are starting
to investigate how we can put the properties of prototype-based languages to
structure and simplify the development of mobile agent software and thus also
distributed systems.

In this paper we introduce some preliminary resulting communication ab-
stractions based on the delegation mechanism most prototype-based languages
feature. As a concrete case we will discuss some coordination problems in the
master-slave design pattern and do a few gedankenexperiments in language de-
sign in this context.

Questions and Answers

Can class and prototype based languages be mixed? The prototype based language
we are designing also mixes both concepts to avoid some of the problems associated
with prototype based languages (cfr. Paper on Intersecting classes and prototypes on
http://www.dedecker.net/jessie/publications), such as the usage of mixins to solve the
problem of encapsulation with object inheritance. However, we do not have looked for
a static type system while maintaining sufficient dynamicity of the program.

What are the semantics when the WE-construct is used in a child? When the
WE construct is used in a child, then the message is sent to the children of that child.
We are also exploring the possibility of adding another keyword that is the inverse of
the super, that is to send messages to the direct children of a parent as opposed to
sending the message to all children in the tree. Probably more clearer names should be
chosen for these keywords.

Why introduce new language concepts and not implement them through the data
abstractions that are already present in the language? There are several advantages

of having dedicated language concepts that support the expression of communication

abstractions: First, it can impose a new way of thinking to the developer. Second, it

can influence the design of the program so it can aid in a better design of the program

leading to a better reusability and understandability of the code. Third, compilation

techniques can be used to optimize the use of these constructs depending on the con-

text where they are used. However, we need to be very careful in our choice of what

constructs we choose to add to our language. The constructs that are added to the

language should be as orthogonal as possible with clearly defined semantics.

3 Discussions

The second part of the workshop was dedicated to discussions and working
groups. After a brainstorming session where attendees suggested several subjects
of discussion, we selected three of them for further exploration: communication
abstraction taxonomies, quality of service, and peer-to-peer architectures.



WS03. Communication Abstractions for Distributed Systems 9

3.1 Communication Abstraction Taxonomy

The ”taxonomy of communication abstractions” working group was an attempt
to (in an hour and a half) to organize the space of communication abstrac-
tions. The papers in the communications abstractions workshops cover a wide
range of topics. This working group was an attempt to bring some regularity
and organization to the communication abstraction space. Identification of the
dimensions of the communications space has the additional advantage that many
possibilities for communication organizations become evident by their place in
the space. If, in some sense, a communication abstraction has dimensions such
as ”synchronicity,” ”object identity,” and so forth, and the possible choices for
each dimension can be identified, then the space itself defines a wide variety of
models to be examined and characterized.

Communication abstractions are about modelling concurrent processing sys-
tems. Models serve as a foundation for analysis. By examining a model of
communication, one can prove properties such as reliability, security, or non-
termination. By analyzing the behavior of a model, one can derive metrics such
as the temporal, space, or message efficiency of algorithms.

One thing that the discussion quickly revealed was that communication ab-
stractions vary in their degree of detail and depth. By considering or defining
additional features about a model, additional facts about that model can be
derived. However, superfluous detail gets in the way of analysis of more fun-
damental properties. To reflect these distinctions, the group defined a ”chemi-
cal hierarchy” of communication abstractions: the most basic models were the
”quarks” of communication, assembled and extended successively into ”atomic,”
”(simple) inorganic” modules, and most complexly, ”organic” molecules.

Quark dimensions include:

Entities This speaks to the kinds of things communicate. Most familiar object
identity is communicants as discrete objects with identity.

Population dynamics. This dimension is the lifecycle of communicating enti-
ties. Examples of lifecycle issues include whether entities can be created or
destroyed in the model.

The ”atomic” dimensions speak to the primitive communication model. Subele-
ments of this topic include

Syncronicity Whether the model supports synchronous or asynchronous com-
munications (blocking and unblocking)

Sharing Whether communication is by message passing or shared memory
Casting Whether communication is monocast (directed at a particular recipi-

ent), multicast (directed at a defined set of recipients) or broadcast (receiv-
able by everyone)

Signatures Whether communications communications identify the sender.

Moving up the complexity chain, we can build communication models with
the complexity of simple molecules. Molecular communication models add addi-
tional elements with respect to dimensions such as:



10 A. Beugnard, L. Fiege, R. Filman, E. Jul and S. Sadou

Failure That is, what guarantees does the system make about communication
delivery and what notification the system provides for communication fail-
ures. Failure notions also include consistency models for shared memory.

Arbitration Who sees things in which order. A communication model might
hypothesize, for example, that messages are received in the order sent or
merely that a sent message will be eventually received.

Fairness Does the model make any assertion about order of processing.
Structure of messages What structure (for example, required or allowed fields,

varieties of message types) does the model demand for message content
Direction of flow of information In the communication act, does informa-

tion flow from the initiator of communication to a target, from the target to
the initiator, in both directions, or does no more information than synchro-
nization get exchanged?

Streaming Are messages discrete entities, or does the model support some form
of ”streamed” communications.

Coordination What mechanisms does the model hypothesize for synchroniza-
tion, coordination, or serialization among entities. For example, a model may
hypothesize recognition of the ”termination” of a set of ”objects.”

Model builders can develop models with organic complexity by embellishing
models with additional features. These include:

Locus A model may support a notion of physical locality. This may be a sim-
ple as distinguishing between elements that are ”local” versus ones that are
”remote,” or might extend to an entire proximity structure. At the use level,
this distinction may be seen in ”access transparency” and ”location trans-
parency.” Having introduced a notion of locus, we can also address mobility:
the ability of an object to change its locus.

Connectors A model might divide its entities into ”communicators” and ”con-
nectors,” or even make other distinctions in the entity space, with different
actions and privileges ascribed to different kinds of entities.

Annotation A model might provide additional meta-information about the
communicating entities. Examples of such information include the protocols
(interfaces) the entity supports, or its ”ownership.”

Conversations A model may provide ”conversational” mechanisms that sup-
port a pattern of communications. Examples of such conversational mecha-
nisms include transactions and protocols.

Quality of service A model may provide mechanisms for varying the quality
of service to different entities.

Security Having defined communication and message structures, a model may
address properties such as guarantees of information reaching its destination,
data integrity, anonymicity, eavesdropping, and identity spoofing.

Time All the of the above issues may be extended with temporal notions, in-
cluding, for example, the ability to put temporal limits or exceptions on
other behaviors.



WS03. Communication Abstractions for Distributed Systems 11

We note that the above discussion is shadowed by a kind of ”Turing equiva-
lence theorem.” The distinctions are in some sense arbitrary, because choices in
many dimensions may be used (in a sufficiently rich computational environment)
to mimic the behavior of the opposite choices. For example, shared memory can
be understood as a particular variety of messages to a memory entity; asyn-
chronous communication can be mimicked using synchronous communication
and secretary threads.

3.2 Quality of Service

One of the topics discussed during the workshop was the relationship between
quality of service requirements, the separation of concerns, and communica-
tion abstractions. Obviously, engineers will benefit from abstractions that can
be refined and whose quality of service can be customized to the needs of the
application or the deployment environment. The central issues are where and
when the necessary QoS parameters are determined, and how their provision is
reflected in the communication abstractions.

A separation of concerns is reasonable in several respects. We should assume
multiple layers of abstraction due to their interrelated but different focus: an
application, a middleware, and a protocol layer. This facilitates simple, not too
general communication abstractions that are focused on a specific layer. Different
techniques may be applied on the abstractions to handle QoS requirements. For
instance, aspect-oriented programming (AOP) and filter composition are readily
available for application programming, while their applicability and relationship
to reflective middleware and interceptors in the middleware layer is an open issue.
On protocol and operating system layers even other approaches are expedient,
cf. the x-Kernel.

A clean separation of QoS management from communication abstractions
seems to have advantages, but cannot be achieved always and may even be un-
desirable. While leaving abstractions as simple as possible is reasonable, one
may want QoS handling to be part of abstraction primitives/APIs for two rea-
sons: to specify application requirements and for awareness of QoS degradation.
The latter is important to enable an application to react to scarce resources,
which mainly determines whether QoS should be integrated into the abstrac-
tions. Is the component itself not affected by QoS degradation or has it to know
of the available QoS? At design time, compile/deployment time, or at runtime?
Thus, depending on the availability of the afore-mentioned techniques to im-
plement QoS handling in the different layers a number of different approaches
for QoS-aware communication abstractions are conceivable, ranging from simple
primitives that are implemented in different ways (e.g., send() methods that use
either simple TCP or atomic broadcast services), to QoS aspects woven into ap-
plication code wrapping the actual abstraction primitives, to QoS specifications
that are traded and matched to existing services.



12 A. Beugnard, L. Fiege, R. Filman, E. Jul and S. Sadou

3.3 Peer-to-Peer

This discussion group may be seen as a continuation of the one of the last year,
which was concluded as follows:

Peer-to-Peer (P2P) systems promote technological and social changes like new
devices, new way of working, going both ways. P2P as a new communication
patterns demand new solutions such as fault tolerant TCP/IP and no central

authority. This kind of communication, which may ne anonymous or
pseudonymous, leads to awareness, heterogeneous devices and more freedom

(“cutting out the middle man”).

Right now there is no consensus on the definition of P2P communication.
All proposed definitions reflect its use rather than its concepts. Then our group
focused its discussion on the concepts behind P2P communication. Here is the
list of the concepts which we identified:

– no centralized control: This often leads to a greater system robustness.
– A symmetrical communication, which contrasts with the Client/Server model’s

asymmetrical communication.
– Nodes are servers and clients at the same time:

• A peer takes the server role when it receives a client request,
• A peer takes client role on external events, because the client initiates

communication to servers,
– Peers are equal partners at the same level. There is no hierarchy between

peers.

Another point was discussed by the group, concerns which abstractions are
needed for P2P communication. Abstraction may relate to the following aspects:

– Mapping: how to map the peer ID to its location and how are IDs assigned.
– Peer discovery: how to discover other peers and negotiate communication

channels.
– Asynchronous and event-driven communication: Several communications mod-

els may be taken as example. Among them we can quote broadcast (one to
all), multicast (one-to-many) and publish/subscribe communication model.

These points can be taken as a starting point for future research.

4 Workshop Conclusions

Understanding and categorizing interactions among software entities appears to
be a crucial in the future. This workshop attempts to gather people from various
communities that are working on the same problem in order to meet and share
their points of views. Communication is essential to multi-agents systems, soft-
ware architecture, and distributed systems, but these fields have different goals.



WS03. Communication Abstractions for Distributed Systems 13

This year, the workshop was more oriented towards platforms and implementa-
tion and adaptation of communication means.

Finally, we intend to setup a mailing list and a collaborative WikiWiki site
in order to share ideas and projects3.

The attendees suggested organizing a follow up workshop next year.

References

[1] Joo Paulo Almeida, Marten van Sinderen, Lus Ferreira Pires, and Dick Quartel. A
systematic approach to platform-independent design based on the service concept.
to appear Sept. 2003.

[2] J.-P. Almeida, M. van Sinderen, D. Quartel, and L. Ferreira Pires. In-
teraction systems design and the protocol- and middleware-centred
paradigms in distributed application development. http://bscw.enst-
bretagne.fr/bscw/bscw.cgi/0/2123258, July 2003.

[3] C. Boesgaard. Anonymous communication in practice. http://bscw.enst-
bretagne.fr/bscw/bscw.cgi/0/2123258, July 2003.

[4] O. Ciuhandu and J. Murphy. A modular qos-enabled load man-
agement framework for component-based middleware. http://bscw.enst-
bretagne.fr/bscw/bscw.cgi/0/2123258, July 2003.

[5] J. Dedecker and W. De Meuter. Communication abstractions through new
language concepts. http://bscw.enst-bretagne.fr/bscw/bscw.cgi/0/2123258, July
2003.

[6] J. Kangasharju E. Aitenbichler. Communication abstractions in mundocore.
http://bscw.enst-bretagne.fr/bscw/bscw.cgi/0/2123258, July 2003.

[7] A. Frei, A. Popovici, and G. Alonso. Event based systems as adaptative mid-
dleware platforms. http://bscw.enst-bretagne.fr/bscw/bscw.cgi/0/2123258, July
2003.

[8] F. Greve, M. Hurfin, J.-P. Le Narzul, Xiaoyung Ma, and F. Tronel. Adam:
A library of agreement component for reliable distributed programming.
http://bscw.enst-bretagne.fr/bscw/bscw.cgi/0/2123258, July 2003.

[9] Yang Jia and Jizhou Sun. Cscwgroup: A group communication system for coop-
erative work in the wan. http://bscw.enst-bretagne.fr/bscw/bscw.cgi/0/2123258,
July 2003.

[10] D.A.C. Quartel, L. Ferreira Pires, M. van Sinderen, H.M. Franken, and C.A.
Vissers. On the role of basic design concepts in behaviour structuring. Computer
Networks and ISDN Systems, 29:413–436, 1997.

3 If you want more information please contact antoine.beugnard@enst-bretagne.fr


